Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280429

RESUMO

Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFß) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFß induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFß to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFß-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFß-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFß-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFß responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.


Assuntos
Fatores de Transcrição Forkhead , Expressão Gênica , Células Estreladas do Fígado , Cirrose Hepática , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Biomarcadores/metabolismo , Técnicas de Inativação de Genes , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/genética
2.
Mol Metab ; 78: 101815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797918

RESUMO

BACKGROUND AND AIMS: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS: Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS: Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.


Assuntos
Ácidos Docosa-Hexaenoicos , Fígado Gorduroso , Feminino , Masculino , Animais , Camundongos , Fosfolipídeos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Fígado Gorduroso/metabolismo , RNA
3.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645721

RESUMO

Background and Aims: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results: Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions: Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.

4.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R81-R95, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212551

RESUMO

The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.


Assuntos
Doenças Cardiovasculares , Hipertensão , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Doenças Cardiovasculares/genética , Dieta Hiperlipídica , Hipertensão/patologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/genética
5.
Metabolites ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36837834

RESUMO

Studies have indicated that increasing plasma bilirubin levels might be useful for preventing and treating hepatic lipid accumulation that occurs with metabolic diseases such as obesity and diabetes. We have previously demonstrated that mice with hyperbilirubinemia had significantly less lipid accumulation in a diet-induced non-alcoholic fatty liver disease (NAFLD) model. However, bilirubin's effects on individual lipid species are currently unknown. Therefore, we used liquid chromatography-mass spectroscopy (LC-MS) to determine the hepatic lipid composition of obese mice with NAFLD treated with bilirubin nanoparticles or vehicle control. We placed the mice on a high-fat diet (HFD) for 24 weeks and then treated them with bilirubin nanoparticles or vehicle control for 4 weeks while maintaining the HFD. Bilirubin nanoparticles suppressed hepatic fat content overall. After analyzing the lipidomics data, we determined that bilirubin inhibited the accumulation of ceramides in the liver. The bilirubin nanoparticles significantly lowered the hepatic expression of two essential enzymes that regulate ceramide production, Sgpl1 and Degs1. Our results demonstrate that the bilirubin nanoparticles improve hepatic fat content by reducing ceramide production, remodeling the liver fat content, and improving overall metabolic health.

6.
Biomolecules ; 13(2)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36830621

RESUMO

Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR). In this study, male C57BL/6J mice were fed a high-fat diet (HFD, 60%) for 30 weeks to induce NAFLD and were treated subcutaneously with GNUR or sham (CTRL) once weekly for six weeks while continuing the HFD. The results show that GNUR treatments significantly raised plasma bilirubin levels and reduced plasma levels of the bilirubin catabolized product, urobilin. We show that GNUR decreased liver fat content and ceramide production via lipidomics and lowered fasting blood glucose and insulin levels. We performed extensive kinase activity analyses using our PamGene PamStation kinome technology and found a reorganization of the kinase pathways and a significant decrease in inflammatory mediators with GNUR versus CTRL treatments. These results demonstrate that GNUR increases plasma bilirubin and reduces plasma urobilin, reducing NAFLD and inflammation and improving overall liver health. These data indicate that UGT1A1 antagonism might serve as a treatment for NAFLD and may improve obesity-associated comorbidities.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Urobilina/metabolismo , Bilirrubina , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Transdução de Sinais , Lipídeos , Resistência à Insulina/genética
7.
Antioxidants (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671031

RESUMO

Bilirubin levels in obese humans and rodents have been shown to be lower than in their lean counterparts. Some studies have proposed that the glucuronyl UGT1A1 enzyme that clears bilirubin from the blood increases in the liver with obesity. UGT1A1 clearance of bilirubin allows more conjugated bilirubin to enter the intestine, where it is catabolized into urobilin, which can be then absorbed via the hepatic portal vein. We hypothesized that when bilirubin levels are decreased, the urobilin increases in the plasma of obese humans, as compared to lean humans. To test this, we measured plasma levels of bilirubin and urobilin, body mass index (BMI), adiposity, blood glucose and insulin, and HOMA IR in a small cohort of obese and lean men and women. We found that bilirubin levels negatively correlated with BMI and adiposity in obese men and women, as compared to their lean counterparts. Contrarily, urobilin levels were positively associated with adiposity and BMI. Only obese women were found to be insulin resistant based on significantly higher HOMA IR, as compared to lean women. The urobilin levels were positively associated with HOMA IR in both groups, but women had a stronger linear correlation. These studies indicate that plasma urobilin levels are associated with obesity and its comorbidities, such as insulin resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...